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Eigenvalues for a one-step process in one dimension 
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Abstract. The eigenvalues of a master operator W, defined by 

F"(f)=(WBP(f)),-P"(f) 

and its symmetric counterpart are found. 

1. Introduction 

In this work we will discuss a one-dimensional non-linear one-step process defined by 
the master equation 

Pfl(t)  = ( W , P ( t ) ) ,  -Pfl(t) 

This equation describes a random walk in a symmetric potential which may be attractive 
( p  > 0), flat ( p  = 0) or repulsive ( p  < 0). 

At this stage the interest of (1) is rather academic in the sense that we can exactly 
calculate the eigenvalues of a non-linear problem, which is rare enough to be worth 
mentioning. These eigenvalues are calculated for the symmetric counterpart of the 
operator W, and it is of some pedagogical interest to compare them with the eigenvalues 
of W, itself. It is noteworthy that the Fokker-Planck approximation of (1) can be 
exactly diagonalised and hence comparisons between the two problems can be made 
( M  Hongler, private communication). 

Note finally that the 'fermionic' character of the transition rates in (1) indicates 
that this equation may find some application in problems related to coding or biological 
processes. 

From now on we will restrict ourselves to the attractive case p > 0 and will discuss 
W, as an operator on the real Z2. In 0 2 we will calculate the stationary state of (1) 
and use it to symmetrise W,. In 0 3 we will diagonalise the symmetric counterpart of 
W, and finally exhibit the eigenvalues of W, itself. 

2. The stationary solution 

0305-4470/86/040541+ 04%02.50 0 1986 The Institute of Physics 

(2) 

547 



548 A Malaspinas 

with r , ( a ) = ( ~ - ~ " + l ) - ' ,  g n ( a ) = ( a 2 " + l ) - '  and r n ( a ) + g n ( u ) = l .  The symmetry of 
the problem is reflected in the fact that r-,, = g,, n E Z .  It is easy to find the stationary 
states for equation (2) (van Kampen 1981). One has to solve 

r n P ~ - g , - l P ~ - l  = - J  (3) 

with J an arbitrary constant. It is easily checked that the only solution of (3) satisfying 
PS, <CO is the one corresponding to J = 0, and one finds 

oc 

(4) 
1 2  P i  =- cosh(n log U ) ,  N = K n 2  cosh(n log a ) ,  
N n=-m 

which is symmetric as expected. This is just the stationary state of Alkemade's diode 
(van Kampen 1961). For J = 0, (3) is just the detailed balance condition and PS, can 
be used to symmetrise T, by defining 

Pn(*) = (P'"'"On(t). ( 5 )  

Using the notation s( n )  := sinh( n log a ) ,  c( n) = cosh( n log a )  and t (  n) = 
tanh( n log a) ,  equation (2) becomes 

Q n ( t )  = ( S o O ( t ) ) n  - O n ( t )  

Note that the eigenvalues of S, are eigenvalues of T, but the contrary need not be 
true since the transformation ( 5 )  has an unbounded inverse. 

3. Eigenvalues of S,  

It is easy to see that S,  has a pure point spectrum. Indeed its Hilbert-Schmidt norm 
is given by 

U X 

H ( S a )  = Lo c( n ) c( n + 1 )  (7 )  

which is clearly finite and hence S,  is compact. Note one more easily checked property 
of Sa:  if E" is an eigenvector with eigenvalue A then E - "  defined by E;" = ( - 1 ) " E t  
is an eigenvector with eigenvalue -A. 

Let ap(S,)  be the set of eigenvalues of S,. We will sketch the proof that a,(S,) = 
{ i 1/ a k} k-0. 

Step 1. up(&), by constructing eigenvectors for these values. 

Step 2. { * l / a 2 L " } L = o c  a,(S,), by constructing eigenvectors for these values. 

Step 3. O E  uP(S,) .  
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Step 4. { r t l / ak }k ,o  are all the eigenvalues and are non-degenerate. 

Proof of step 1 .  In view of the properties of Sa stated at the beginning of this section 
it is enough to show that { l / a 2 L } L = O ~  a p ( S a ) .  We define e L  by 

It is enough to show that there exist coefficients {p2k(L)}k=O such that E L  defined by 

E:= (Pi)1'2ef; ( 9 )  

is an eigenvector of Sa with eigenvalue l / a z L  and hence prove step 1. 
By replacing E L  in SaE = ( l / a Z L )  E we find 

( T,*eL) ,  = + ( I  + t ( n ) ) e f ; - ,  = ( l / a  ZL ) e , ,  L 

where TX is the adjoint of Ta defined in equation (2). Inserting (8) we find 

C { p 2 k ( L ) [ 1 ( 1 + t ( n ) ) s ( n - 1 ) 2 k + 1 ( 1 -  t ( n ) ) s ( n + 1 ) 2 k ] }  
L 

k=O 

Using s( n * 1) = s ( n ) c (  1) i s( l ) c (  n ) ,  c( n)* = 1 + s( n)',  some algebra and summation 
index manipulation, one shows that the determinant of this system is just 

L 1 1  
p=o n (p-;;".)=o 

which proves the existence of the p Z p ( L ) .  Evidently E:= (P',)'/*e," defines a vector 
E L  E I ,  and hence step 1 is proven. 

Proof of step 2. Again it is enough to prove { l / a 2 L + ' } L , o c  up(sa). It is again enough 
to show that the vector O L  defined by 

1'2 L Ok=(Ps,)  0, 

with 
L 

o ; =  p2k+l(L)S(n)Zk+1 
k = O  

is an eigenvector with eigenvalue l / a z L + ' .  The proof follows the same lines as in 
step 1. 

Proof of step 3. Suppose E o  E l,, E o  # 0 exists such that SaEo = 0. Define eo by 

E: = (PS,)' / 'e; .  

Then eo must satisfy 
= -a2'"-1' 0 en-2. 

It is enough to concentrate on n 5 0. From the recurrence relation it follows that 
eo 2, - - ( - l ) " a z n 2 e ~  and that e,,,, = ( - l ) n a 2 n 2 + 2 n e ~  and hence E o g  1,. 
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Proof of step 4. Since Sa is symmetric its Hilbert-Schmidt norm must be equal to the 
sum of the squares of its eigenvalues counted with their multiplicity. It follows that 
it is enough to prove (see equation (7))  

which is true by elementary manipulations. 
This completes the proof that u,(s,) = {*l/ak}k=@ 
Let us now consider the eigenvalues of T,, equation (2). One can show that every 

A E [-1, 13 is an eigenvalue of T,. Since A = 1 is the maximum eigenvalue and because 
of the symmetry of the problem it is enough to concentrate on the interval (0 , l ) .  

Generalising slightly, one can prove the following assertion. Let {Q,}n=o be a 
sequence defined by 

On+ 1 = A n +  1 Qn - 7, Qn - I , Q o # O  or Q i # O ,  

A n  being a monotone decreasing sequence with limn.+" A, = A E ( 0 , l )  and T,  a positive 
sequence converging to zero. Then Qn E 12. We will not give the details of the proof 
but only the steps which may be followed. 

Step 1 .  Prove the following lemma. Let x, be defined by 

%+I = - T n , / ( X n  + A n ) .  

For E E (0 , l )  define I ,  = [ - (1 - & ) A ,  0) and n o ( & )  a positive integer such that T~ < 
A 2 ( 1  - E ) E  for all n > n o ( & ) .  Then x, E I, for all m 3 n provided x, E I ,  for n 7 n o ( & ) .  

Step 2. At most a finite number of the Qn can be zero. 

Step 3. For n big enough define x, = Qn/ 
zero or to -A. The proof proceeds by noting that if for n big enough 

- A,,. Prove that x, converges either to 

X, E (-CO, -A,,) U I, U [0, CO) 

then x, E I ,  for all m > n + 1. 

Step 4. Show that Q, E 12. This is easily done since by step 3 either Qn/ + A E (0 , l )  
or Q n I Q n - 1  + O *  
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